- · 内蒙古医科大学学报版面[07/01]
- · 《内蒙古医科大学学报》[07/01]
- · 《内蒙古医科大学学报》[07/01]
- · 《内蒙古医科大学学报》[07/01]
首都医科大学宣武医院副院长卢洁教授:AI在脑脱
作者:网站采编关键词:
摘要:在脑脱髓鞘病MRI成像人工智能应用研究中,我们收集到150例患者,其中73例为多发性硬化,77例为视神经脊髓炎。我们以68例患者作为训练集,62例作为验证集,手动勾画病灶,基于组学
在脑脱髓鞘病MRI成像人工智能应用研究中,我们收集到150例患者,其中73例为多发性硬化,77例为视神经脊髓炎。我们以68例患者作为训练集,62例作为验证集,手动勾画病灶,基于组学列线图在T2WI图像的病灶中提取了273个定量组学特征。
我们看到鉴别诊断的拓扑研究结果,与MS患者脑内病灶比较,NMO患者的病灶连接更加紧密,而且病灶的体积更大。拓扑研究具有很多优点,模型和结果可视化、病灶网络连接可视化、病灶体积可视化。
人工智能辅助鉴别诊断同样具有挑战性,主要在于基于单一的临床数据库、基于单一序列、基于单一磁共振仪,组学列线图仍缺乏可解释性,且缺乏人工智能模型和临床医生判读的对比。
首都医科大学宣武医院副院长卢洁教授作为本次大会的嘉宾,以《脑脱髓鞘病MRI成像的人工智能应用研究》为题发表了演讲。
和以往的鉴别诊断模型比较,拓扑模型具有更高的AUC,达到0.875,准确性和特异性也很高。
MS与NMOSD的鉴别诊断十分具有挑战性,根据既往文献的报道,大约30%的MS患者在疾病早期会被误诊为NMOSD。这两种疾病的临床症候比较相似,实验室检查结果也有部分重叠,因此确诊周期较长,大约12%的患者需要至少6年时间才能确诊。对基层医院的医生与低年资医生来说,这两种疾病的诊断更具有挑战性。
通过磁共振纵向随访研究发现,慢性病灶具有融合的趋势,而且临床的残疾程度会逐渐增加。所以我们提出假设随着疾病的进展,病灶的拓扑性质发生改变;反之,病灶拓扑结构变化也具有潜在的预测作用。
宣武医院收集了116例脑脱髓鞘病患者,其中78例为MS,38例为NMO,包含两个数据集,既有1.5T又有3T。我们收集了T1-MPRAGE和T2WI两个序列的影像数据,以及患者的残疾程度评分、病程等临床信息。
这部分研究共收集了90例进展的MS和54例非进展MS,如果残疾量表增高1.5分以上就定义为进展,小于1.5分定义为非进展,用T2WI数据进行训练。通过对病灶进行勾画提取多发病灶的空间模式。
这是具体的影像组学工作流程图,从图像采集与分割,到深度特征、语义特征、形态特征及纹理特征的提取,再到进行特征筛选与模型构建。特征筛选和建模均有很多方法可供选择。
近日,2022年医学人工智能大会(CMAI 2022)暨第二届“中国医学学术期刊发展”高端论坛召开。
NMOSD的特征性病灶为室管膜周围病灶以及皮质脊髓束病灶。
拓扑就是把实体抽象成与其大小、形状无关的“点”,而把连接实体的线路抽象成“线”,进而以图的形式来表示这些点与线之间关系的方法,目的在于研究这些点、线之间的相连关系。拓扑结构图就是表示点和线之间关系的图,拓扑可以应用在分子结构、地理图、DNA结构和绳结等。
我们也可以将拓扑在脑脱髓鞘疾病的诊断中进行应用。由于MS和NMO两种疾病的发病机制不同,其脑内病灶的空间分布不同,形态、大小也不相同,所以这两种疾病的脑内病灶的拓扑性质并不相同,我们希望能够找到潜在的鉴别诊断突破点。
典型表现为u形纤维病灶、Dawson手指征以及卵圆形的病灶形态。
文章来源:《内蒙古医科大学学报》 网址: http://www.nmgykdx.cn/zonghexinwen/2022/1026/408.html